Top innovations The wind industry's supply chain continues to innovate in response to the twin demands of growing turbine sizes and cost pressures, both onshore and offshore ## GOLD ## Wallaby Boats catamaran-type crew transfer vessel Wallaby Boats' catamaran-type crew transfer vessel (CTV) offers a clever energy efficient alternative to "common" equivalents with motion-compensated walking bridges, which typically require 250-400kW in active mode. Innovative features include an upper main deck structure and separate twin hulls interlinked via an active hydraulic suspension-dampening system with accumulators for intermediate energy storage. Wallaby's initial 18-metre crew transfer vessel claims several distinct benefits, including comparable performance to "conventional" 26-metre catamaran-CTVs at similar 30 knots sailing speed. Second, active systems interaction in balancing wave-induced motions reduces the acceleration forces on humans by up to 30%. Third, standard 18-metre catamaran-CTVs typically operate at maximum significant wave heights of 1.2 metres, versus 1.75 metres or possibly even 2.1 metres for an equivalent Wallaby-type vessel. Finally, the mainly passive system offers favourable energy input requirements during all operational modes. Pressurising the system for 5 to 10-minutes before sailing starts requires around 6kW. During sailing, active mode (2-3kW) is only engaged during turns, whereby Wallaby's hull leans over to reduce sea sickness. Semi-automated bow-height control mode (10-15kW) is engaged during turbine approach and personnel transfer. The deck is then kept horizontal and stable (no heave, roll or pitch) with a fully-automated deck altitude control system (DACS), additionally deployed for cranehoisting and recovery operations. This mode sometimes requires full systems power (31kW), or less depending on sea state. German utility EnBW has chartered the prototype vessel from May 2022 for a two-year period. ## **Top innovations** | Model | Product | Innovations | Status | |---|--|---|--| | Wallaby Boats
18-metre
catamaran-type
CTV (Germany) | Ground-
breaking crew
catamaran
transfer vessel
(CTV) for
offshore use | Active hydraulic
suspension and
deck stabilising
during transfer | 18-metre
prototype CTV
due to be ready
in May 2022 and
chartered by
utility EnBW | | Eagle-Access
offshore
personnel
transfer system
(Netherlands) | Fully motion
compensated
people and
cargo transfer
system for
offshore | Electrically
powered
(~75kW),
transfers people
in a cabin | Successful full-
scale sea trials
of Eagle-Access
system at Horns
Rev 2 completed | | Liftra LT1500
turbine installation
crane (Denmark) | Self-climbing
crane with
120-tonne
hoisting
capacity,
current focus on
onshore | Concept uses
extra outer
tower flanges for
crane
attachment | Model presented
at WindEurope
2021; full-scale
prototype due in
2022; commercial
launch planned
for 2024 | | Enercon LCC140
self-climbing
crane (Germany) | Second-
generation self-
climbing crane
for full EP3 and
EP5 installation | Remotely
controlled;
installation at
space-
constrained
sites; | Deployed with
E-136 EP5
turbines atop
modular steel
towers (MSTs) | | Spanset novel,
simple product
design for single-
blade hoisting
(Spain) | Single-blade
hoisting device
and centre-of-
gravity blade
marking solution | Expandable
horizontal beam
with downward
facing blade
slings | Deployed by
Nordex for
N163/5.X
prototype blade
installation |